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Abstract: We investigated whether high-protein enteral nutrition with immune-modulating nutrients
(IMHP) enriched with β-glucan stimulates immune function in critically ill patients. In a randomized
double-blind placebo-controlled study, 30 patients consumed one of three types of enteral nutrition:
a control or IMHP with and without β-glucan. The IMHP with β-glucan group showed increases
in natural killer (NK) cell activities relative to the baseline, and greater increases were observed
in NK cell activities relative to the control group after adjusting for age and gender. The IMHP
groups with and without β-glucan had greater increases in serum prealbumin and decreases in
high-sensitivity C-reactive protein (hs-CRP) than the control group. The control group had a greater
decrease in peripheral blood mononuclear cell (PBMC) interleukin (IL)-12 production than the IMHP
with and without β-glucan groups. In all patients, the change (∆) in hs-CRP was correlated with
∆ prealbumin and ∆ PBMC IL-12, which were correlated with ∆NK cell activity and ∆ prealbumin.
This study showed beneficial effects of a combination treatment of β-glucan and IMHP on NK cell
activity. Additionally, strong correlations among changes in NK cell activity, PBMC IL-12, and hs-CRP
suggested that β-glucan could be an attractive candidate for stimulating protective immunity without
enhanced inflammation (ClinicalTrials.gov: NCT02569203).
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1. Introduction

Critically ill patients are at risk of nutritional deficiency; thus, supportive nutrition is required for
most intensive care unit (ICU) patients, with enteral nutrition preferred over parenteral nutrition [1,2].
Enteral nutrition with immune-modulating nutrients, such as ω-3 fatty acids, selenium, and
antioxidants, may modulate pathophysiological processes in critical illness, such as inflammatory and
oxidative stress responses and impaired immune function [3,4]. The immunomodulatory effect of the
Lentinula edodes (shiitake) mushroom has been conducted in previous studies and there are various
biological active compounds in mushrooms. β-glucan, which is derived from mushrooms, is known
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as one of the biological active compounds in mushrooms [5–8]. Recently, β-glucan polysaccharides
have been reported to stimulate the immune system, modulating humoral and cellular immunity
and thereby having beneficial effects in fighting infections. Previous clinical studies conducted
the immunomodulatory effects of β-glucan in patients with cancer, allergies, or respiratory tract
infection [9–11]. Richter et al. reported that short-term oral application of β-glucan significantly
stimulated mucosal immunity of children with chronic respiratory problems in a series of clinical
trials [12,13]. β-glucan is thought to mediate its stimulatory effects through the activation of various
immune system components, including macrophages, neutrophils, natural killer (NK) cells, and
lymphocytes [14–17].

Although previous data clearly provide support for an immunomodulatory effect of β-glucan,
there are few clinical studies on the immunomodulatory effect of β-glucan in critically ill patients.
More clinical data are therefore clearly needed on the efficacy of orally supplemented β-glucan as
an immune modulator in critically ill patients. The objective of this study was to determine whether
high-protein (24% of total calories from protein) enteral nutrition of immune-modulating nutrients
(e.g., ω-3 fatty acids, selenium, and antioxidants) (IMHP) enriched with β-glucan stimulates immune
function compared with standard enteral nutrition (control: 20% of total calories from protein) or
IMHP without β-glucan in critically ill patients.

2. Materials and Methods

2.1. Participants

From April 2014 to September 2015, 30 critically ill patients were enrolled in this study after
admission to the ICU at Yonsei University Severance Hospital. The ICU patients were composed
of 18 patients with pulmonary disease and 12 patients with trauma. Disease severity was evaluated by
the Acute Physiology and Chronic Health Evaluation (APACHE) II score [18]. All patients were treated
according to the appropriate guidelines [19,20]. Informed consent was provided by a close family
member. This investigation was approved by the Institutional Review Board at Yonsei University
Severance Hospital, Seoul, Korea (Approval number: 4-2013-0902). All comorbidities and histories of
the study participants were recorded (ClinicalTrials.gov: NCT02569203) [21].

2.2. Randomization and Intervention

Using computer-generated randomization lists, 30 critically ill patients were randomized to
receive one of three types of enteral nutrition: standard enteral nutrition (control), high-protein
enteral nutrition with immune-modulating nutrients (IMHP) enriched with β-glucan, or IMHP
without β-glucan. The ready-to-use control and IMHP with and without β-glucan products had
identical packaging with no differences in appearance, texture, or smell. Investigators and clinicians
were blinded to the treatment groups. Patients assigned to the control group received a standard
formula tube feed (protein:fat:carbohydrate from total calories = 20%:30%:50%; Dr. Chung’s Food Co.,
LTD, Cheongju, Korea). Those assigned to the IMHP group received ω-3 fatty acid (3.3 g/L)- and
antioxidant (110 µg/L selenium)-enriched high protein tube feed (protein:fat:carbohydrate from total
calories = 24%:30%:46%; Dr. Chung’s Food Co., LTD, Korea). Those assigned to the IMHP group with
β-glucan received β-glucan-enriched IMPH tube feed (experimental product; Dr. Chung’s Food Co.,
LTD, Korea).

β-glucan derived from mushrooms (Lentinus edodes) and the content of β-glucan in mushroom
extract was 13%. The β-glucan used in this study was not concentrated; instead, the whole mushroom
extract was included in enteral nutrition product for IMHP with β-glucan group. IMHP with β-glucan
group was designed to contain 50 mg of β-glucan per 200 kcal (0.25 mg/kcal) from the mushroom
extract, and the rest was contents to the standard formula used in the control group, but fortified with
ω-3 fatty acid, antioxidants, and enriched high protein. The enteral nutrition product for IMHP group
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was designed to contain exactly the same contents as those for the IMHP group with β-glucan except
for the β-glucan content. The composition of the enteral nutrition product was indicated in Table 1.

Table 1. Composition of the enteral nutrition product.

Nutrient Control IMHP with β-Glucan IMHP

Calories (kcal) 200 200 200
Protein (g) 10.0 12.0 12.0
Total fat (g) 6.7 6.7 6.7

Total carbohydrate (g) 28.5 23.0 23.0
Vitamin A (µgRE) 150.00 150.00 150.00
VitaminB1 (mg) 0.24 0.24 0.24
VitaminB2 (mg) 0.30 0.30 0.30
VitaminB6 (mg) 0.30 0.30 0.30
VitaminB12 (µg) 0.48 0.48 0.48
Vitamin C (mg) 20.00 40.00 40.00
VitaminD3 (µg) 1.00 1.00 1.00

Vitamin E (mgα-TE) 2.00 4.80 4.80
VitaminK1 (µg) 9.75 15.00 15.00
Folic acid (µg) 80.00 80.00 80.00

Niacin (mg) 3.20 3.20 3.20
Biotin (µg) 6.00 6.00 6.00

Pantothenic acid (mg) 1.00 1.00 1.00
Calcium (mg) 140.00 150.00 150.00

Phosphorus (mg) 140.00 140.00 140.00
Magnesium (mg) 58.00 44.20 44.20

Zinc (mg) 2.00 4.00 4.00
Iron (mg) 2.00 2.00 2.00

Sodium (mg) 155.00 141.35 141.35
Chloride (mg) 170.00 121.20 121.20

Potassium (mg) 260.00 240.39 240.39
Manganese (mg) 0.46 1.60 1.60

Iodine (µg) 19.50 30.00 30.00
Copper (mg) 0.10 0.32 0.32

Selenium (µg) 0.00 22.00 22.00
Chromium (µg) 0.00 5.00 5.00

Molybdenum (µg) 0.00 2.50 2.50
Taurine (mg) 22.00 22.00 22.00

L-Carnitine (mg) 22.00 22.00 22.00
Choline (mg) 73.00 73.00 73.00
β-glucan (mg) 0.00 50.00 0.00

Enteral nutrition was initiated within 24 h of ICU admission. Enteral feeding was delivered
at a constant rate to achieve a minimum of 50% basal energy expenditure (BEE; determined using
the Harris–Benedict equation) ˆ 1.2 within the first 12 h [22]. If well tolerated, enteral nutrition was
advanced to achieve a BEE ˆ 1.2 within 48 h. Complementary feeding with enteral or parenteral
nutrition was allowed for an initial 48 h. From the third day, the patient received a minimum of 75% of
BEE ˆ 1.2. The enteral diet was delivered continuously for seven days during the ICU stay at a rate
not exceeding BEE ˆ 1.2. The daily enteral intake was recorded to obtain the total volume and calories
delivered to the patients. The data on daily total calorie intake were abstracted from the medical
records. Blood samples were collected at the baseline and after seven days.

2.3. Anthropometric Parameters and Blood Collection

Body mass index (BMI) was measured with an Inbody S10 bedside-type body composition
analyzer (Inbody, Cheonan, Republic of Korea) in a supine state in the morning. Venous blood
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specimens were collected in EDTA-treated and plain tubes and centrifuged to obtain plasma and
serum. The collected blood samples were stored at ´70 ˝C until analysis.

2.4. Serum Lipid Profiles and Glucose

Serum triglyceride and serum total cholesterol concentrations were analyzed by enzymatic
assays using a Hitachi 7600 autoanalyzer (Hitachi, Tokyo, Japan). Serum high-density lipoprotein
(HDL)-cholesterol concentrations were determined by selective inhibition using a Hitachi 7600
autoanalyzer. Low-density lipoprotein (LDL)-cholesterol concentrations were calculated indirectly
using the Friedwald formula; i.e., LDL-cholesterol = total cholesterol ´ [HDL-cholesterol +
(triglyceride/5)] for subjects with serum triglyceride concentrations <400 mg/dL. Serum glucose
concentrations were measured according to the hexokinase method on a Hitachi 7600 autoanalyzer.

2.5. Serum Nutritional Status

Serum albumin concentrations were analyzed through the BCG method using an ALB kit (Siemens,
Tarrytown, NY, USA) with an ADVIA 2400 autoanalyzer (Siemens, Tarrytown, NY, USA). Serum
prealbumin concentrations were determined by an immunoturbidimetric assay using a COBAS
INTEGRA autoanalyzer (Roche-BM, Rotkreuz, Switzerland).

2.6. Serum Liver and Renal Function

Serum glutamic oxaloacetic transaminase (GOT) and serum glutamic pyruvate transaminase
(GPT) were analyzed through the IFCC UV method with a Hitachi 7600 autoanalyzer. Serum
gamma-glutamyl transpeptidase (γ-GTP) was measured according to a modified Szanz method
on a Hitachi 7600 autoanalyzer. Blood urea nitrogen (BUN) was determined by a kinetic UV assay for
urea/urea nitrogen using a Hitachi 7600 autoanalyzer. Creatinine was analyzed through the creatinine
Jaffe method on a Hitachi 7600 autoanalyzer.

2.7. Leukocyte Count and Serum High-Sensitivity C-Reactive Protein

Leukocyte count was determined using the HORIBA ABX diagnostic analyzer (HORIBA ABX
SAS, ParcEuromedicine, Montpellier, France). Serum high-sensitivity C-reactive protein (hs-CRP)
levels were measured with a kit from the N-Assay LA CRP-S D-TYPE (Nittobo, Tokyo, Japan) with a
Hitachi 7600 autoanalyzer.

2.8. Peripheral Blood Mononuclear Cells

To analyze the cytokine assay in peripheral blood mononuclear cells (PBMCs) supernatants,
we isolated PBMCs from whole blood samples. Whole blood samples were mixed with the same
volume of RPMI 1640 (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and gently overlaid on
the histopaque (Sigma-Aldrich, Irvine, UK) and then centrifuged (20 min, 1800 rpm, 15 ˝C). After
separation, a thin layer of buffer coat was isolated and washed twice with RPMI 1640. The pellet
was resuspended in RPMI 1640 supplemented with penicillin streptomycin (Gibco, Thermo Fisher
Scientific, Waltham, MA, USA). The isolated PBMCs were cultured in RPMI 1640 supplemented with
10% fetal bovine serum (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), seeded into 12-well
plates (1.0 ˆ 106 cells/mL), and incubated at 37 ˝C under 5% CO2 for no more than 46 h ˘ 30 min.
After incubation, the supernatants were collected and stored at ´80 ˝C.

2.9. Cytokine Assay in Serum and PBMC Supernatants

Interferon (IFN)-γ was measured with a kit from an IFN gamma High-Sensitivity Human ELISA
Kit (Abcam plc-Cambridge Science Park, Cambridge, UK) according to the manufacturer’s instructions.
Interleukin (IL)-12 levels were analyzed by a High-Sensitivity Human IL-12 (P70) ELISA kit (Genway
Biotech Inc., San Diego, CA, USA) using a Victor ˆ5 2030 multilabel plate reader (PerkinElmer,
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Hopkinton, MA, USA) at 450 nm. IL-6, IL-1β, and tumor necrosis factor (TNF)-α levels in serum and
PBMC supernatants were measured using the Bio-Plex™Reagent Kit (Bio-Rad Laboratories, Hercules,
CA, USA).

2.10. NK Cell Activity

Isolated PBMCs from the whole blood samples were incubated with K562 cells to analyze
the cytotoxic activity of NK cells. A whole blood sample was mixed with the same volume of
RPMI medium 1640 (Gibco, Thermo Fisher Scientific, Waltham, MA), then gently overlaid on
Histopaque®1077 (Sigma-Aldrich, Irvine, UK) and centrifuged for 20 min at 1800 rpm at 15 ˝C.
After separation, a buffer coat layer was isolated, washed once with RPMI 1640 medium, and then
resuspended in 1 mL of 10% fetal bovine serum. The isolated PBMCs (effector cell, E) were seeded
into 96-well plates at ratios of 5:1 and 2.5:1 with the K562 cells (2 ˆ 104 cells/well) (target cell, T) and
then incubated at 37 ˝C under 5% CO2 for more than 4 h. The cytolytic activities of NK cells were
analyzed via the CytoTox 96® Non-Radioactive Cytotoxicity Assay Kit (Promega Co., Fitchburg, WI,
USA) according to the manufacturer’s instructions. The color reactions were read at 490 nm using
a Victor ˆ5 2030 multilabel plate reader (PerkinElmer, Hopkinton, MA, USA), and the results were
calculated by the following formula:

% Cytotoxicity “
Experimental-Effector Spontaneous-Target Spontaneous

Target Maximum-Target Spontaneous
ˆ 100

2.11. Statistical Analysis

Statistical analysis was performed using SPSS version 21.0 (IBM/SPSS Corp., Chicago, IL, USA).
The logarithmic transformation was performed on skewed variables. We compared the parameters at
the baseline and follow-up, and net change (difference from the baseline) among the control, IMHP
enriched with β-glucan. And IMHP groups by using the Kruskal–Wallis test and the Mann–Whitney
U-test with Bonferroni correction. The Wilcoxon test was evaluated to compare the effects of the
intervention within each group. A general linear model test was applied to adjust for potential
confounding factors. The Spearman correlation coefficient was used to examine relationships between
variables. A heat map was generated to visualize correlations among variables. The results were
expressed as the mean ˘ standard error (SE). A p-value < 0.05 was considered statistically significant.

3. Results

3.1. Clinical Characteristics

This study enrolled 30 patients. Eight patients (three control, two IMHP with β-glucan, and
three IMHP) dropped out of the study. The major reasons for exclusion were the inability to meet
the caloric goal, withdrawn consent for the clinical trial, and death by multiple organ failure. Table 2
shows the general and biochemical characteristics of the control and IMHP with and without β-glucan
groups. No statistically significant differences among the three groups were observed at the baseline
with regard to age, gender distribution, APACHE II score, and total calorie intake (day 1, day 3, and
day 7). Estimated average daily intake of β-glucan was 232.8 mg in IMHP with β-glucan group.
After adjustment for age and gender distribution, no significant differences among the three groups
were observed at the baseline and at the seven-day follow-up with regard to BMI, serum glucose,
triglycerides, total cholesterol, HDL, LDL, leukocyte counts, and serum albumin. After seven days
of treatment, patients in the IMHP group showed significant increases in serum concentrations of
total cholesterol, LDL cholesterol, and albumin and patients in the control group showed a significant
elevation in leukocyte counts (Table 2).
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Table 2. Clinical characteristics in the control and in IMHP groups with and without β-glucan.

Variables
Total (n = 22)

pa pb
Control (n = 7) IMHP with β-Glucan (n = 8) IMHP (n = 7)

Baseline Follow-up Baseline Follow-up Baseline Follow-up

Age (year) 53.7 ˘ 6.18 64.1 ˘ 6.03 72.6 ˘ 3.23 0.141
Male/Female n, (%) 4 (57.1)/3 (42.9) 5 (62.5)/3 (37.5) 6 (85.7)/1 (14.3) 0.488
BMI (kg/m2) 24.1 ˘ 1.31 23.4 ˘ 1.38 22.1 ˘ 1.20 21.9 ˘ 1.37 20.8 ˘ 1.50 20.2 ˘ 1.39 0.213 0.114
APACHE II score 16.7 ˘ 3.07 16.9 ˘ 3.39 18.5 ˘ 2.69 0.862
TCI (kcal/d), mean

Day 1 736.3 ˘ 176.0 738.1 ˘ 211.5 790.3 ˘ 129.1 0.688
Day 3 1253.5 ˘ 214.3 1191.0 ˘ 69.8 1059.3 ˘ 151.1 0.546
Day 7 1507.7 ˘ 157.2 1065.9 ˘ 153.3 1102.0 ˘ 156.7 0.170

Glucose (mg/dL)
ű

136.1 ˘ 8.40 143.1 ˘ 5.86 179.0 ˘ 29.3 173.8 ˘ 29.1 306.9 ˘ 117.4 154.6 ˘ 17.4 0.052 0.959
Triglyceride (mg/dL)

ű

104.0 ˘ 19.6 79.3 ˘ 8.83 116.3 ˘ 16.3 109.0 ˘ 12.1 79.0 ˘ 13.6 84.4 ˘ 11.2 0.335 0.145
Total-cholesterol (mg/dL)

ű

105.7 ˘ 10.9 118.4 ˘ 13.2 108.0 ˘ 13.2 132.0 ˘ 8.85 112.0 ˘ 13.9 145.0 ˘ 7.75 * 0.998 0.293
HDL-cholesterol (mg/dL)

ű

27.9 ˘ 6.34 31.6 ˘ 4.08 25.9 ˘ 4.67 24.9 ˘ 3.54 34.6 ˘ 4.19 38.6 ˘ 3.88 0.645 0.057
LDL-cholesterol (mg/dL)

ű

57.1 ˘ 7.76 71.0 ˘ 12.7 58.9 ˘ 11.7 85.3 ˘ 7.69 61.6 ˘ 12.6 89.4 ˘ 6.71 * 0.924 0.526
Leukocyte counts (X103/µL)

ű

6.99 ˘ 0.48 12.2 ˘ 2.26 * 12.3 ˘ 2.21 12.7 ˘ 2.24 12.9 ˘ 1.83 10.8 ˘ 1.28 0.089 0.839
Serum albumin (mg/dL)

ű

2.71 ˘ 0.20 2.94 ˘ 0.21 2.83 ˘ 0.10 2.94 ˘ 0.18 2.69 ˘ 0.23 2.93 ˘ 0.19 * 0.722 0.979

Mean ˘ SE.
ű

tested by logarithmic transformation, pa-values derived from Kruskal–Wallis test at the baseline. pb-values derived from Kruskal–Wallis test in follow-up. * p < 0.05
derived from Willcoxon test. IMHP: high-protein enteral nutrition with immune-modulating nutrients. BMI: body mass index. TCI: total calorie intake. HDL: high-density lipoprotein.
LDL: low-density lipoprotein.
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3.2. Effects on NK Cell Activity and Serum Prealbumin Following Seven Days of Tube Feeding of the Control
and the IMHP Groups with and without β-Glucan

NK cell activities (%) were measured based on E:T ratios of 5:1 or 2.5:1. As shown in Table 3, no
significant differences were found in the NK cell activities in both conditions measured at the baseline
among the three groups. NK cell activities at the 5:1 or 2.5:1 E:T ratios were significantly increased
in the IMHP with β-glucan group at seven days compared to the baseline. When we compared the
changes among the three groups, the IMHP with β-glucan group had greater increases in NK cell
activity at a ratio of E:T = 5:1 than the control group before (p = 0.019) and after (p = 0.037) adjusting
for age and gender. Additionally, the IMHP with β-glucan group had greater increases in NK cell
activity at ratio of E:T = 2.5:1 (p = 0.034) than the control group; however, only an increasing tendency
remained after adjusting for age and gender distribution (p = 0.055).

No significant differences were found in serum prealbumin concentrations at the baseline among
the three groups (Table 3). Serum prealbumin concentrations were significantly increased in the
IMHP with β-glucan group and IMHP group at seven days compared to the baseline. When we
compared the changes among the three groups, the IMHP with β-glucan group and IMHP group had
greater increases in serum prealbumin concentrations than the control group before (p = 0.002) and
after (p = 0.001) adjusting for age and gender. The IMHP group had the greatest increase in serum
prealbumin concentrations among the three groups. At seven days, serum prealbumin concentrations
were higher in the IMHP group than those in the IMHP with β-glucan group and the control group
(p = 0.017).

3.3. Effects on Serum CRP and Cytokines and PBMC Cytokine Production Following Seven Days of Tube
Feeding in the Control and the IMHP Groups with and without β-Glucan

As shown in Table 3, no significant differences were found in serum hs-CRP and cytokines and
PBMC cytokine production at the baseline among the three groups. Serum CRP concentrations were
significantly decreased in the IMHP with β-glucan group and the IMHP group at seven days compared
to the baseline. When we compared the changes among the three groups, the IMHP with β-glucan
group and the IMHP group had greater decreases in serum CRP concentrations than the control
group before (p = 0.002) and after (p = 0.006) adjusting for age and gender. The IMHP group had
the greatest decrease in serum CRP concentrations among the three groups. At seven days, serum
CRP concentrations were lower in the IMHP group than those in the IMHP with β-glucan group and
control group (p = 0.006).

PBMC IL-12 production was significantly decreased in the control group at seven days compared
to the baseline. When we compared the changes in PBMC IL-12 among the three groups, the control
group had a greater decrease in IL-12 release from PBMC than the IMHP with β-glucan group and
the IMHP group before (p = 0.004) and after adjusting for age and gender (p = 0.003). At seven days,
the PBMC IL-6 level was significantly higher in the control group than in the IMHP group (p = 0.046)
(Table 3).



Nutrients 2016, 8, 336 8 of 14

Table 3. NK cell activity, prealbumin, serum, and PBMC cytokines in the control and the IMHP groups with and without β-glucan.

Variables
Total (n = 22)

pa pb pc pd
Control (n = 7) IMHP with β-Glucan (n = 8) IMHP (n = 7)

Baseline Follow-up Baseline Follow-up Baseline Follow-up

NK cell activity 5:1 (%)
ű

13.6 ˘ 3.69 12.7 ˘ 5.62 11.0 ˘ 2.40 31.4 ˘ 6.36 * 10.7 ˘ 7.41 18.2 ˘ 4.63 0.266 0.155
Change ´0.86 ˘ 4.17 b 20.4 ˘ 5.93 a 7.47 ˘ 3.59 a,b 0.019 0.037

NK cell activity 2.5:1 (%)
ű

14.1 ˘ 2.14 11.8 ˘ 3.60 9.88 ˘ 5.14 29.3 ˘ 4.76 * 7.56 ˘ 5.37 18.4 ˘ 6.11 0.841 0.059
Change ´2.34 ˘ 3.08 b 19.4 ˘ 6.67 a 10.8 ˘ 6.18 a,b 0.034 0.055

Prealbumin (mg/dL)
ű

11.9 ˘ 2.15 10.9 ˘ 1.86 b 10.4 ˘ 0.84 13.3 ˘ 0.80 b,* 9.00 ˘ 1.21 19.3 ˘ 1.87 a,* 0.589 0.017
Change ´1.00 ˘ 1.05 c 2.88 ˘ 0.83 b 10.3 ˘ 2.12 a 0.002 0.001

hs-CRP (mg/dL)
ű

84.7 ˘ 20.0 99.7 ˘ 18.9 a 130.3 ˘ 33.0 65.7 ˘ 13.9 a,* 164.1 ˘ 23.8 19.8 ˘ 9.87 b,* 0.093 0.006
Change 15.0 ˘ 11.9 a ´64.6 ˘ 24.5 b ´144.3 ˘ 28.5 b 0.002 0.006

Serum
IL-12 (pg/mL) 9.54 ˘ 8.84 7.67 ˘ 4.58 3.21 ˘ 3.21 10.6 ˘ 9.55 3.90 ˘ 3.90 0.00 ˘ 0.00 0.696 0.193
IFN- γ (pg/mL) 0.03 ˘ 0.03 0.03 ˘ 0.03 0.24 ˘ 0.24 0.28 ˘ 0.28 0.00 ˘ 0.00 0.00 ˘ 0.00 0.613 0.613
TNF-α (pg/mL)

ű

6.23 ˘ 1.87 3.78 ˘ 0.46 6.55 ˘ 1.39 6.06 ˘ 1.79 7.80 ˘ 0.81 6.67 ˘ 1.79 0.889 0.634
IL-6 (pg/mL)

ű

66.8 ˘ 23.2 49.5 ˘ 23.6 39.5 ˘ 9.94 23.5 ˘ 6.07 72.3 ˘ 51.6 13.2 ˘ 3.02 0.456 0.090
IL-1β (pg/mL)

ű

7.27 ˘ 5.65 4.31 ˘ 3.47 0.82 ˘ 0.08 0.75 ˘ 0.07 0.92 ˘ 0.17 1.05 ˘ 0.34 0.217 0.321
Nonstimulated PBMCs

IL-12 (pg/mL) 24.1 ˘ 6.06 12.2 ˘ 5.47 * 15.3 ˘ 4.73 20.2 ˘ 4.55 18.8 ˘ 2.19 20.7 ˘ 3.16 0.519 0.305
Change ´11.9 ˘ 3.38 b 4.83 ˘ 2.61 a 1.89 ˘ 1.68 a 0.004 0.003

IFN- γ (pg/mL) 1.00 ˘ 0.31 0.67 ˘ 0.19 0.54 ˘ 0.17 0.75 ˘ 0.23 0.78 ˘ 0.18 0.76 ˘ 0.20 0.520 0.999
TNF-α (pg/mL)

ű

9.66 ˘ 4.98 25.4 ˘ 16.9 3.17 ˘ 2.06 3.95 ˘ 0.96 5.71 ˘ 2.27 3.92 ˘ 0.99 0.651 0.578
IL-6 (pg/mL)

ű

26.9 ˘ 5.19 119.5 ˘ 70.5 a 12.1 ˘ 3.07 21.1 ˘ 9.65 a,b 24.2 ˘ 8.06 12.6 ˘ 2.25 b 0.054 0.046
IL-1β (pg/mL)

ű

4.08 ˘ 1.49 9.32 ˘ 5.54 1.93 ˘ 0.64 2.52 ˘ 1.15 2.35 ˘ 0.58 1.87 ˘ 0.60 0.297 0.312

Mean ˘ SE.
ű

tested by logarithmic transformation, pa-values derived from Kruskal–Wallis test at the baseline. pb-values derived from Kruskal–Wallis test in follow-up. pc-values derived
from Kruskal–Wallis test in Changed value. pd-values adjusted for age and sex. All alphabetical p < 0.05 derived from Mann–Whitney U-test with Bonferroni correction; no significant
differences among the groups marked by the same letter and significant differences among the groups marked with different letters. * p < 0.05 derived from Willcoxon test in each
group. NK: natural killer. IMHP: high-protein enteral nutrition with immune-modulating nutrients. PBMC: peripheral blood mononuclear cell. hs-CRP: high-sensitivity C-reactive
protein. IL: interleukin. IFN: interferon. TNF: tumor necrosis factor.
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3.4. Relationships among Changes in BMI, Serum Albumin, Prealbumin, Cytokines, PBMC Cytokine
Production, and NK Cell Activity

Correlations among the changed levels (∆) of BMI, serum albumin, prealbumin, cytokines, PBMC
cytokine production, and NK cell activity were determined after adjusting for age and gender (Figure 1).
In 22 patients, ∆ BMI positively correlated with ∆ serum IL-1β, which was positively correlated with
∆ serum IL-12 and ∆ PBMC IFN-γ. The net ∆ of hs-CRP was strongly and negatively correlated with
∆ serum prealbumin (r = ´0.831, p < 0.001) and ∆ PBMC IL-12 (r = ´0.507, p = 0.016) (Figure 2). The
net ∆ of serum albumin was positively correlated with ∆ PBMC TNF-α and ∆ serum prealbumin
was positively correlated with ∆NK cell activity (E:T = 5:1) and ∆ PBMC IL-12 (r = 0.590, p = 0.004)
(Figure 2). ∆NK cell activity (E:T = 5:1) was strongly and positively correlated with ∆ NK cell activity
(E:T = 2.5:1) (r = 0.831, p < 0.001) and ∆NK cell activity at both conditions was positively correlated
with ∆ serum prealbumin and ∆ PBMC IL-12. ∆ Serum TNF-αwas positively correlated with ∆ NK
cell activity (E:T = 5:1). ∆ PBMC IL-6 was negatively correlated with ∆ PBMC IL-12 and positively
correlated with ∆ PBMC IL-1β (Figure 2).
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4. Discussion

This randomized double-blind placebo-controlled study found beneficial effects following enteral
nutrition with a combination of β-glucan (250 mg/L) and IMHP [high-protein (24% of total calories
from protein). These immune-modulating nutrients (e.g., ω-3 fatty acids and antioxidants) had
beneficial effects on NK cell activity, a marker of immune competence [23–25], in critically ill patients
known to exhibit hyporesponsiveness of NK cell activity [26]. This result is in agreement with those of a
previous study in which β-glucan enhanced NK cell activation in mice [27,28]. Generally, the evidence
in immune modulation by β-glucan is strongly supported by numerous studies [16,17]. However,
there are few clinical studies to demonstrate the immunomodulatory effects of orally supplemented
β-glucan in critically ill patients. In this clinical trial, the IMHP with the β-glucan group showed
significant increases in NK cell activities at 5:1 or 2.5:1 E:T ratios from the baseline, and a significantly
greater increase was seen in those at the 5:1 E:T ratio than in the control group. Additionally, an
increase in NK cell activity at a ratio of E:T = 2.5:1 showed a greater tendency in the IMHP with
β-glucan group than the control group after adjusting for age and gender. These results could suggest
a synergistic effect of β-glucan on enhanced NK cell activity following seven days of feeding of IMHP
enriched with β-glucan in comparison with IMHP without β-glucan.

The recent report that NK cells have beneficial anti-infection and anti-inflammatory properties [29]
supports the idea that therapeutic immune intervention in critically ill patients could stimulate the
function of NK cells [30]. The immunostimulating effect of β-glucan is associated with the activation
of NK cells, macrophages, and T-helper (Th) cells [5]. Activated macrophages/monocytes release
IL-12, which may exert a protective effect in critically ill patients through the IL-12-induced increase in
cellular immunity and phagocytic functions [31]. In the control group of this study, IL-12 release from
PBMC significantly decreased from the baseline, but the IMHP with β-glucan group showed a slight
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but not significant increase in PBMC IL-12 production and serum IL-12 concentration. Additionally,
changes in NK cell activities were positively correlated with changes in PBMC IL-12 levels.

IL-12 positively regulates IFN-γ secretion by NK cells, which is a major source of IFN-γ, a potent
immune stimulatory cytokine [25]. In this study, however, there were no significant changes in the
serum and PBMC levels of IFN-γ, TNF-α, IL-6, and IL-1β in the IMHP groups with and without
β-glucan. Additionally, changes in PBMC IL-12 were negatively correlated with changes in serum
hs-CRP. Furthermore, the IMHP groups with and without β-glucan showed a greater reduction in
hs-CRP than the control group, which showed the highest serum hs-CRP and PBMC IL-6 production
among the three groups at seven days and increased leukocyte counts from the baseline. IMHP groups
with and without β-glucan contained 3.3 g/Lω-3 fatty acids, which are known to suppress leukocyte
numbers, cytokine production, and lymphocyte proliferation [32]. Therefore, the lack of changes in
serum and PBMC IFN-γ, TNF-α, IL-6, and IL-1β, even with increased NK-cell activities in the IMHP
with β-glucan group, could be related to the intake ofω-3 fatty acid.

Changes in serum levels of hs-CRP were negatively correlated with changes in serum prealbumin.
As expected, serum prealbumin indicated higher protein intake in the IMHP groups with and without
β-glucan (24% of total calorie intake from protein) than in the control group (20% of total calorie intake
from protein). Additionally, changes in serum prealbumin were positively correlated with changes in
PBMC IL-12, one of the Th1 cytokines, to increase cellular immunity [31]. These results partly support
previous findings that nutrition therapy in critically ill patients plays an important role in assisting
recovery and improving outcomes [32–36]. In spite of the small sample size of 22 critically ill patients,
this randomized double-blind placebo-controlled study clearly showed beneficial effects following
a combination of β-glucan (250 mg/L) and IMHP [high-protein (24% of total calorie from protein)
enteral nutrition of immune-modulating nutrients (e.g., ω-3 fatty acids and antioxidants)] on NK cell
activity, a marker of immune competence, without significant changes in serum and PBMC levels of
IFN-γ, TNF-α, IL-6, and IL-1β. Additionally, a strong positive correlation between changes in NK
cell activity and changes in PBMC IL-12, which were negatively correlated with changes in hs-CRP,
suggests that β-glucan could be an attractive candidate to be added to IMHP for the stimulation of
protective immunity without enhancing inflammation. Further investigations are required to evaluate
the effect of β-glucan on mortality and complication rates in larger long-term trials.

5. Conclusions

Immune-enhancing enteral nutrition enriched with β-glucan showed significant increases in NK
cell activities from the baseline and a significantly greater increase than the control group. IMHP with
and without β-glucan had greater increases in serum albumin and decreases in hs-CRP than the control
group. The control group had a greater decrease in PBMC IL-12 production than the IMHP groups
with and without β-glucan. This study showed the beneficial effects of a combination treatment of
β-glucan and IMHP on NK cell activity, and suggested that β-glucan could be an attractive candidate
to add to IMHP for stimulation of protective immunity without enhanced inflammation.
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Abbreviations

The following abbreviations are used in this manuscript:

BEE basal energy expenditure
BMI body mass index
BUN blood urea nitrogen
E effector cell
γ-GTP gamma-glutamyl transpeptidase
GOT glutamic oxalacetic transaminase
GPT glutamic pyruvate transaminase
HDL High-density lipoprotein
hs-CRP high-sensitivity C-reactive protein
ICU intensive care unit
IFN interferon
IL interleukin
IMHP high-protein enteral nutrition with immune-modulating nutrients
LDL Low-density lipoprotein
NK natural killer
PBMC peripheral blood mononuclear cell
T target cell
TNF tumor necrosis factor
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